DINeR

A Database for Insect Neuropeptide Research

Search the database for information about the various species and neuropeptides of interest

Insect Neuropeptides - Allatostatin A

Introduction

The first four members of the insect AST-A family were isolated in 1989 from brain extracts of the cockroach Diploptera punctata (Woodhead et al., 1989). These peptides were called allatostatins due to their ability to inhibit juvenile hormone (JH) biosynthesis by the corpora allata. These peptides are characterized by FGLamide C-terminus and thus also referred to as FGLamide-related allatostatins (FGLa/ASTs). The D. punctata AST-A precursor encoding gene was also the first to be cloned (Donly et al., 1993). Thirteen AST-A peptides are encoded by this precursor in D. punctata and the number of peptides encoded by the precursor varies between species (Bendena and Tobe, 2012). AST-A mediates it effects by binding to rhodopsin-type GPCRs. The first insect AST-A receptor was deorphanized in Drosophila melanogaster (Birgül et al., 1999). Later, two independent groups characterized a second AST-A receptor from D. melanogaster (Larsen et al., 2001; Lenz et al., 2001). AST-A receptors have also been characterized in other species and phylogenetic analysis suggests that outside Diptera, most insects posses a single AST-A receptor (Felix et al., 2015; Zandawala and Orchard, 2015). Insect AST-A receptors are homologous to the vertebrate galanin receptors (Jékely, 2013; Mirabeau and Joly, 2013). To date, genes encoding AST-A and its receptor have not been found in Coleopteran genomes (Hauser et al., 2008).

Location

AST-As are classic brain-gut peptide, expressed in both the CNS and midgut endocrine cells (Sarkar et al., 2003; Veenstra et al., 2008). Within the CNS, AST-A-like immunoreactivity can be detected in the brain, suboesophageal ganglion and the ventral nerve cord of both D. melanogaster and Rhodnius prolixus (Hergarden et al., 2012; Sarkar et al., 2003; Yoon and Stay, 1995). Moreover, AST-A is expressed by various neurosecretory cells and can thus function as as neurohormone aside from its role as a neuromodulator in certain brain centers.

Function

AST-As act as inhibitors of JH synthesis only in cockroaches, crickets and termites (Stay and Tobe, 2007). However, myoinhibitory effects of AST-A have been shown in several species (Lange et al., 1995; Robertson et al., 2012; Zandawala and Orchard, 2013). Thus, it has been hypothesized that the primary function of AST-A is myoinhibition and the allatostatic function evolved secondarily. AST-A also regulates various aspects of feeding and metabolism in several species (Hentze et al., 2015; Hergarden et al., 2012; Lwalaba et al., 2010; Zandawala and Orchard, 2013).

SeqLogo and Cladogram

Click above image to go to SeqLogo and Cladogram page

Suggested Reviews

  • Bendena, W.G., Tobe, S.S., 2012. Families of allatoregulator sequences : a 2011 perspective. Can. J. Zool. 90, 521–544. doi:10.1139/Z2012-012
    View Review
  • Nässel, D.R., Winther, Å.M.E., 2010. Drosophila neuropeptides in regulation of physiology and behavior. Prog. Neurobiol. 92, 42–104. doi:10.1016/j.pneurobio.2010.04.010
    View Review
  • Stay, B., Tobe, S.S., 2007. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu. Rev. Entomol. 52, 277–299. doi:10.1146/annurev.ento.51.110104.151050
    View Review
  • Verlinden, H., Gijbels, M., Lismont, E., Lenaerts, C., Vanden Broeck, J., Marchal, E., 2015. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. J. Insect Physiol. 80, 2–14. doi:10.1016/j.jinsphys.2015.04.004
    View Review

References

  • Bendena, W.G., Tobe, S.S., 2012. Families of allatoregulator sequences : a 2011 perspective. Can. J. Zool. 90, 521–544. doi:10.1139/Z2012-012
  • Birgül, N., Weise, C., Kreienkamp, H.J., Richter, D., 1999. Reverse physiology in Drosophila: Identification of a novel allatostatin-like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family. EMBO J. 18, 5892–5900. doi:10.1093/emboj/18.21.5892
  • Donly, B.C., Ding, Q., Tobe, S.S., Bendena, W.G., 1993. Molecular cloning of the gene for the allatostatin family of neuropeptides from the cockroach Diploptera punctata. Proc. Natl. Acad. Sci. U. S. A. 90, 8807–8811. doi:10.1073/pnas.90.24.12055b
  • Felix, R.C., Trindade, M., Pires, I.R.P., Fonseca, V.G., Martins, R.S., Silveira, H., Power, D.M., Cardoso, J.C.R., 2015. Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes. PLoS One 10, e0130347. doi:10.1371/journal.pone.0130347
  • Hauser, F., Cazzamali, G., Williamson, M., Park, Y., Li, B., Tanaka, Y., Predel, R., Neupert, S., Schachtner, J., Verleyen, P., Grimmelikhuijzen, C.J.P., 2008. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front. Neuroendocrinol. 29, 142–165. doi:10.1016/j.yfrne.2007.10.003
  • Hentze, J.L., Carlsson, M. a., Kondo, S., Nässel, D.R., Rewitz, K.F., 2015. The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila. Sci. Rep. 5, 11680. doi:10.1038/srep11680
  • Hergarden, A.C., Tayler, T.D., Anderson, D.J., 2012. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl. Acad. Sci. 109, 3967–3972. doi:10.1073/pnas.1200778109
  • Jékely, G., 2013. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc. Natl. Acad. Sci. U. S. A. 110, 8702–7. doi:10.1073/pnas.1221833110
  • Lange, a. B., Bendena, W.G., Tobe, S.S., 1995. The effect of the thirteen dip-allatostatins on myogenic and induced contractions of the cockroach (Diploptera punctata) hindgut. J. Insect Physiol. 41, 581–588. doi:10.1016/0022-1910(95)00008-I
  • Larsen, M.J., Burton, K.J., Zantello, M.R., Smith, V.G., Lowery, D.L., Kubiak, T.M., 2001. Type A allatostatins from Drosophila melanogaster and Diplotera puncata activate two Drosophila allatostatin receptors, DAR-1 and DAR-2, expressed in CHO cells. Biochem. Biophys. Res. Commun. 286, 895–901. doi:10.1006/bbrc.2001.5476
  • Lenz, C., Williamson, M., Hansen, G.N., Grimmelikhuijzen, C.J., 2001. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem. Biophys. Res. Commun. 286, 1117–1122. doi:10.1006/bbrc.2001.5475
  • Lwalaba, D., Hoffmann, K.H., Woodring, J., 2010. Control of the release of digestive enzymes in the larvae of the fall armyworm, Spodoptera frugiperda. Arch. Insect Biochem. Physiol. 73, 14–29. doi:10.1002/arch.20332
  • Mirabeau, O., Joly, J.-S., 2013. Molecular evolution of peptidergic signaling systems in bilaterians. Proc. Natl. Acad. Sci. U. S. A. 110, E2028–37. doi:10.1073/pnas.1219956110
  • Robertson, L., Rodriguez, E.P., Lange, a. B., 2012. The neural and peptidergic control of gut contraction in Locusta migratoria: the effect of an FGLa/AST. J. Exp. Biol. 215, 3394–3402. doi:10.1242/jeb.073189
  • Sarkar, N.R.S., Tobe, S.S., Orchard, I., 2003. The distribution and effects of Dippu-allatostatin-like peptides in the blood-feeding bug, Rhodnius prolixus. Peptides 24, 1553–1562. doi:10.1016/j.peptides.2003.07.015
  • Stay, B., Tobe, S.S., 2007. The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu. Rev. Entomol. 52, 277–299. doi:10.1146/annurev.ento.51.110104.151050
  • Veenstra, J. a., Agricola, H.J., Sellami, A., 2008. Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499–516. doi:10.1007/s00441-008-0708-3
  • Woodhead, a P., Stay, B., Seidel, S.L., Khan, M. a, Tobe, S.S., 1989. Primary structure of four allatostatins: neuropeptide inhibitors of juvenile hormone synthesis. Proc. Natl. Acad. Sci. U. S. A. 86, 5997–6001. doi:10.1073/pnas.86.15.5997
  • Yoon, J.G., and Stay, B. (1995). Immunocytochemical localization of Diploptera punctata allatostatin-like peptide in Drosophila melanogaster. J Comp Neurol 363, 475-488.
  • Zandawala, M., Orchard, I., 2015. Identification and functional characterization of FGLamide-related allatostatin receptor in Rhodnius prolixus. Insect Biochem. Mol. Biol. 57, 1–10. doi:10.1016/j.ibmb.2014.12.001
  • Zandawala, M., Orchard, I., 2013. Post-feeding physiology in Rhodnius prolixus: The possible role of FGLamide-related allatostatins. Gen. Comp. Endocrinol. 194, 311–317. doi:10.1016/j.ygcen.2013.10.005